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A Computer-Aided Protocol Design by Production 
Systems Approach 

Abstract-A protocol design system is a collection of software tools 
for assisting protocol designers to specify, validate, and implement 
communication protocols. In  this paper, we propose a computer-aided 
protocol design system based on the OPS5 production system ap- 
proach. In reality, communication protocols a re  rule-based and data- 
driven without a fixed order in which the submodules can follow and 
computations in communication protocols a re  mainly symbolic with a 
few numerical computations. These characteristics fall into the appli- 
cable problem domain of OPS5. Using the OPS5 production system 
approach, communication rules (state transitions) a re  specified as tri- 
ples of “object-attribute-value” and the modeling of state transitions 
a re  specified by production rules. For protocol validation, the model- 
ing of global states, global state transitions, all logical errors and log- 
ical properties can be formally defined in terms of production rules. 
This paper also presents a n  incremental validation algorithm to facil- 
itate protocol design. Based on a globally shared dataspace (working 
memory) in which different types and levels of information a re  all rep- 
resented in a uniform structure (element), the OPS5 production system 
integrates both rule-based and procedure-based computations. Using 
this characteristic, the machine-dependent part can be abstractly spec- 
ified through external procedure calls, the details of which can be coded 
in a procedure language until the implementation phase. Since com- 
putations in OPS5 a r e  based on pattern matching, all of the attributes 
of elements that are in production rules or in external procedure calls 
can act as data templates for generic data types. This capability en- 
hances the generic specification that allows different realization for 
various implementation environments. In this way, our computer-aided 
protocol design system can be used not only as a rapid prototyping tool 
for simulation but also as a real implementation tool for communica- 
tion protocols. 

I. INTRODUCTION 
communication protocol is a set of rules that governs A the interactions among the communication entities. 

In order to design a communication protocol that is free 
from logical errors, a complex and repeated cycle con- 
sisting of respecification and revalidation is executed until 
there is no logical error in the communication protocol. 
Next, a machine executable code is generated according 
to the validated specification for the protocol implemen- 
tation. 

Many of the popular methods used to formally specify 
communication protocols are based on the state transition 
model [l], such as communicating finite state machines 
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(CFSM) [2], petri nets [3], and formal grammars [4]-[6]. 
For example, Fig. 1 depicts the X.25 packet level DTE/ 
DCE interface communication protocol modeled in CFSM 
[7], where ‘ - ’ represents a send transition, ‘ + ’ repre- 
sents a receive transition, and the circle represents a state 
of a communication entity. Protocol validation is a pro- 
cess to detect logical errors and logical properties in a 
communication protocol. These errors and properties in- 
clude deadlock, unspecified receptions, channel overflow 
(when communication channels are finite), nonexecutable 
interactions, quiescent states, and ambiguous states [8]. 
Global state reachability analysis is one of the most 
straightforward ways to validate logical correctness of a 
communication protocol specified in the state transition 
model [l], [9], [lo]. In this method, a reachable global 
state graph containing all possible transition sequences in 
the communication protocol is generated. All of the log- 
ical errors and logical properties mentioned above can be 
identified in the global state reachability analysis. After 
logical correctness is validated, a machine executable code 
is generated, according to the operational architecture and 
the host operating system, for protocol implementation. 

A formal specification of a communication protocol is 
usually composed of two parts, namely, the machine-in- 
dependent part and the machine-dependent part. The ma- 
chine-independent part includes those rules that define the 
interactions of communication entities in response to in- 
coming events and the interactions in response to changes 
in the local environment. This part can be specified in the 
specification phase and a high level of abstraction is 
needed to permit different realizations for various imple- 
mentation environments. The machine-dependent part in- 
cludes the procedures for invoking and detecting events, 
memory management, and encoding and decoding var- 
ious protocol data units (PDU) for interlayer communi- 
cation. This part cannot be completely specified until the 
implementation phase, due to the fact that its realization 
relies heavily on the operational architecture and the host 
operating system. Therefore, abstraction mechanisms are 
needed in the specification phase to describe communi- 
cation protocols without specifying implementation de- 
tails and without sacrificing generic realization. Since the 
machine-independent part is more descriptive and the ma- 
chine-dependent part is more prescriptive, a rule-based 
representation formalism is suitable for the specification 
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Fig. 1. X.25 communicatic m prc 

phase and a procedure-based representation formalism is 
suitable for the implementation phase. 

In the traditional partitioning approach, a different rep- 
resentation formalism is used in each phase. Therefore, a 
translation is required between the specification phase and 
the validation phase (for simulation) [ I l l ,  [12] and be- 
tween the specification phase and the implementation 
phase [12]-[15]. A design method based on such a parti- 
tioning approach is proposed in [ 121. In this method, three 
different representation formalisms, NESDEL, EYPA, 
and IDL, are used in the specification, validation, and im- 
plementation phases, respectively. Accordingly, three 
translators are needed to translate NESDEL to EYPA, 
EYPA to NESDEL, and NESDEL to IDL, respectively. 

As has been reported in [ 1 I], [ 161 for LOTOS behavior 
expression interpreters, direct generation of the machine 
executable code from a formal specification becomes 
harder when a higher level of abstraction is used as the 
specification formalism. To translate a LOTOS specifi- 
cation into C code, therefore, an interactive compiler is 
used in which the protocol designer needs to guide and 
intervene the compilation procedure [16], [17]. On the 
contrary, overspecification may occur if the representa- 
tion formalism is too prescriptive and contains implemen- 
tation-specific features. As has been reported in [ 181-[20], 
ESTELLE specifications suffer from this kind of draw- 
back, since they include too many implementation-spe- 
cific details. Therefore, a trade-off between these two 
endpoints could be attempted for a compromise. 

In this paper, we propose an integrated approach to pro- 
tocol design based on the OPS5 production system. In 
reality, communication protocols are rule-based and data- 
driven without a fixed order in which the submodules can 
follow and computations in communication protocols are 
mainly symbolic with a few numerical computations. 
These characteristics fall into the applicable problem do- 
main of the OPS5 production system, because the OPS5 
production system uses data-sensitive, unordered rules 
rather than sequential instructions as the basic unit of 
computation and because the design of the OPS5 produc- 
tion sytem is mainly focused on symbolic computations 
with some numerical computations [ 2  11. Therefore, the 
OPS5 production system is appropriate for those prob- 

DTE 

)tocol specified in CFSM model 

lems, such as modeling communication protocols, whose 
knowledge to be programmed occurs naturally in rule 
forms [21]. Furthermore, based on a globally shared da- 
taspace (working memory) in which different types and 
levels of information are all represented in a uniform 
structure (element), the OPS5 production system inte- 
grates both rule-based and procedure-based Computations 
[21]. This integration characteristic is well matched with 
the requirement of both descriptive and prescriptive com- 
putations in implementing communication protocols. 

Currently, several shared dataspace languages, such as 
PROLOG [22, 231 and L.0 (recently developed at Bell- 
core) 1251, are used in rapid prototyping for simulation 
(validation or performance analysis) only, but are not used 
for real implementation. The reason is that both PROLOG 
and L.0 lack the integrated functionality for interprogram 
communication [24]. In contrast to these shared dataspace 
languages, OPS5 can be used for both simulation and real 
implementation. Using the OPS5 production system ap- 
proach, communication rules (state transitions) are spec- 
ified as triples of "object-attribute-value" and the mod- 
eling of state transitions are specified by production rules. 
The inference engine (IE) in the OPS5 production system 
acts as the dispatcher to trigger the applicable production 
rule according to the current configuration of the working 
memory (WM). For the protocol validation, global state 
reachability analysis can be formally modeled in produc- 
tion rules. Some of the production rules describe the tran- 
sition beween reachable global states, and others define 
logical errors and logical properties. An incremental val- 
idation process [26] to facilitate protocol design can also 
be formally realized using this approach. Based on the 
integrated functionality in OPS5, the abstract machine- 
independent specification can be formally described in 
production rules by protocol designers and the machine- 
dependent part can be abstractly described through exter- 
nal procedure calls whose details are coded in a procedure 
language by protocol implementors. Since computations 
in the OPS5 production system are based on pattern 
matching, all of the attributes of elements that are in pro- 
duction rules or in external procedure calls can act as data 
templates for generic data types. This capability enhances 
the generic specification that allows different realizations 
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for various implementation environments. Therefore, in 
contrast to the traditional partitioning approach [ 121 which 
uses three representation formalisms and three translators 
in the three phases of the protocol design process, our 
integrated approach employs a single representation 
mechanism for the entire protocol design process. 

Our proposed computer-aided protocol design system is 
called the Protocol Design Production System (PDPS), 
which is implemented in the Encore Multimax with 12 
processors. In PDPS, .a user-friendly interactive environ- 
ment is supported with an incremental validation process 
and a knowledge base is provided to answer all possible 
questions. Through the combined use of parallel comput- 
ing [27] and a fast pattern matching algorithm [28], PDPS 
can render good performance for reachability analysis. 

The rest of the paper is organized as follows. Section 
I1 gives a brief introduction to the OPS5 production sys- 
tem. Based on the OPS5 production system, Section 111 
describes how to model a communication protocol in the 
specification phase, Section IV describes how to validate 
a communication protocol in the validation phase and 
Section V describes how to implement a communication 
protocol in the implementation phase. Moreover, an al- 
gorithm for incremental validation based on this approach 
is also presented in Section IV. Finally, Section VI de- 
scribes the features of PDPS, compares it with other ap- 
proaches, and discusses possible extensions to PDPS. 

11. THE OPS5 PRODUCTION SYSTEM 

Being one of the powerful production-system lan- 
guages, OPS5 has been implemented in BLISS, LISP 
[2 11, and C [27]. It is composed of three components: a 
set of rules (stored in the production memory), a database 
(working memory), and an interpreter (inference engine) 
v11. 

A rule consists of a precondition-action pair. The left 
hand side (LHS) of a rule is the preconditions that deter- 
mine the applicability of this rule. The right hand side 
(RHS) of a rule is the actions that will be executed if this 
rule is applied. A rule in OPS5 has the following general 
form. 

( p  ( identifier) 
( condition 1 ) ( condition 2 ) . . . ( condition n ) 
-- > 
(action 1 )  (ac t ion2)  ... (ac t ionm)) .  

Each condition is a triple of “object-attribute-value” 
and is called an element. An element can have zero or 
more attributes. Each attribute can be referenced by the 
attribute identifier or the field identifier. For example, 
(person ^sex M *name Jack ^age 35) is an element that is 
called person (field 1) with three attributes: sex (field 2), 
name (field 3), and age (field 4); the values of these at- 
tributes are M, Jack, and 35, respectively. Conditional 
elements are simple templates to be matched against data 
items in the working memory. The values of attributes in 
conditional elements can be specified as constants, or can 
be specified by using the pattern expressions, including 

variables, predicates ( >, <, =, etc), $isjunction, and 
conjunction. For example? ( candidate residence << 
Columbus Cleveland >> sex F age { > 18 < 2 5 )  
*name ( n ) ) is a conditional element that has the follow- 
ing conditions: ( 1 ) the value of attribute residence can be 
“Columbus” or “Cleveland” (disjunction); ( 2 )  the value 
of attribute sex should be the constant “F”;  ( 3 )  the value 
of attribute age should be greater than 18 and less than 25 
(conjunction); (4 )  the value of attribute name is not re- 
stricted and is represented by a variable ( identijier ) ( = 
( n ) ). The relationships among conditional elements are 
represented similarly by using variables in related attri- 
butes. 

A working memory (WM) is a collection of elements. 
There are three main actions that can alter the contents of 
the WM. 

1. Make: add a new element. 
2. Remove: delete an old element. 
3. Modify: update a matched element. 
An interpreter (inference engine) executes the recog- 

nize-act cycle between the execution of the applied rules. 
First, the interpreter executes the pattern matching phase 
to recognize those rules whose LHSs are all satisfied with 
the current contents of the WM and puts them into a con- 
Pict set. Then the interpreter executes the conjict reso- 
lution phase to select one of these rules from the conflict 
set according to a predefined control strategy. Finally, the 
interpreter executes the action part of the selected rule to 
update the contents of the WM. 

The conflict resolution strategy of OPS5 is refractori- 
ness, recency, and specijicity [21]. Refractoriness means 
that a rule should not be allowed to apply more than once 
to the same elements in the WM. Recency means that, if 
more than one production rules are applicable, the pro- 
duction rule that matches with the most recently inserted 
elements has a higher priority to be selected than those 
with older ones. (It can be regarded as the first-in-last-out 
stack-like processing, or the depth-first processing.) 
Specificity means that, if more than one applicable pro- 
duction rules match with the same most recently inserted 
element, the production rule with more conditions to sat- 
isfy has a higher priority to be selected than those with 
fewer conditions, since the former is harder to satisfy than 
the latter. If there are still more than one production rules 
that satisfy the above criteria, the system nondeterminist- 
ically selects any production rule from the applicable ones. 

The OPS5 production system permits external proce- 
dure and function calls from the right hand side of any 
production rule [21]. This facility can enhance the com- 
putational capability of the OPS5 production system, es- 
pecially when some nonsymbolic computations or when 
computations that will be awkwardly solved in rule-based 
forms are included. The format for an external function 
call is as follows: 

( ( function-name ) ( argument-lists ) ) 

where ( argument-lists ) is a sequence of zero or more 
variables (attributes) or constants. A function call will re- 
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turn a value to the corresponding attribute. The format for 
an external procedure call is as follows: 

(call ( procedure-name ) ( interface element ) ). 

All communication between OPS5 and the external pro- 
cedure is via an interface element, which contains the 
messages used in the external procedure. In order to ma- 
nipulate the attributes in an interface element or to insert 
some elements into the WM from the procedure-based 
computation side [21], [27], OPS5 also provides com- 
mands for use in the called functions and procedures. De- 
pending on the version of OPS5 available, these external 
functions and procedures can be coded in the implemen- 
tation language directly (such as LISP, BLISS, or C) or 
other languages indirectly [2 11. 

Pattern matching is usually the bottleneck in rule-based 
systems. The OPS5 production system improves its ca- 
pability of pattern matching by using an efficient pattern 
match algorithm [28] and the C-based implementation 
[27]. To improve the pattern matching execution, this al- 
gorithm tests the common preconditions only once and 
focuses on the updated information to perform incremen- 
tal matches. Performance of the OPS5 production system 
can be further improved if it is executed in a parallel ma- 
chine, such as the Encore Multimax [27], [29]. 

111. SPECIFICATION PHASE 
A formal specification technique should provide con- 

cise and precise descriptions for communication proto- 
cols. In this section, we use the OPS5 production rules to 
formally specify communication protocols and show that 
this approach is well matched with the requirements for 
protocol specification. 

A. Protocol SpeciJication Using Production Rules 
There are two types of transitions in communication 

protocols: one is external events with other layers, such 
as the send and receive transitions; and the other is inter- 
nal events with the local environment, such as the time- 
out event. In PDPS, transitions of external events can be 
described in one uniform element rule. For example, the 
following two elements describe the possible send and re- 
ceive transitions for entities DTE and DCE, respectively. 

(rule ^id 1 ^entity DTE ^type s ̂ cstate 1 ^message 

(rule id 2 entity DCE type r ^cstate 1 ^message 

The modeling of a state transition can be specified by a 
production rule. For example, a send transition is mod- 
eled by the following production rule: 

( p  sendFtransition 
(cstate entity ( e ) state { cs ) ) ~ 

(@e ^id ( i ) ^entity ( e ) type s cstate ( cs ) 

--) 
(call transmit DataRequest ^entity ( e ) ^message 

(modify 1 state ( ns ) )). 

ca1l;reque:t *nstate 2 )  L. 

calI.request ^nstate 2 )  

message ( rn ) nstate ( ns ) ) 

( m ) )  ^ 

This rule can be applied when entity ( e ) is in state ( cs ) 
and there is a send transition in which entity ( e ) sends a 
message ( m )  from current state ( cs ) to next state 
( ns ). In the LHS, element cstate records the current state 
of the entity. In the RHS, the first action calls external 
procedure transmit with element DataRequest. Element 
DataRequest represents the abstract service primitive for 
data transmission. External procedure transmit, in turn, 
invokes the corresponding system process to transmit the 
message. The second action updates the entity's state re- 
corded in the first element cstate. 

Similarly, a receive transition is modeled as follows: 

( p  receive-transition 
( DataIndication en$ty ( e ) ^message ( rn ) ) 
(cstate ^entity> e ) state (cs ) ) 
(rule id ( i ) entity ( e ) type r cstate ( cs ) 

^message ( m )  nstate ( n s ) )  
--) 
(modify 1 ^state ( ns ) ) 
(remove 2)) 

where element DataIndication represents the abstract ser- 
vice primitive for data indication. Element DataIndication 
contains the receive message and is inserted into the WM 
by the corresponding system process. 

Internal events are represented by the insertion of ele- 
ments or by external procedure calls with the correspond- 
ing interface elements. For example, a time-out event for 
the Transport Alternating Bit Protocol (ABP) [30] is mod- 
eled as follows: 

( p  Receive-Time-out 
(timeout ^Aentity ( A ) AAN-Zpoint ( 
(Inform ^Aentity ( A ) rseq ( sn ) Time ( t ) ) 
{ ( Tdata AN-Ipoint ( N ) data ( rn ) ) ( buf ) ] 
(cstate ^Aentity ( A ) ^N-Zpoint ( N ) U-zpoint 

( U )  ̂ state ( S I  ) )  
( commrule ^Zpoint server ^mess time-out ^cstate 

( S I  ) *nstate ( s2 ) 

) ) 

-- > 
(call trandata DataRequest ^A:ntity ( A ) "N-Zpoint 

( buf ) data inf)) 
(modify 4 ^state ( s2 ) ) 
(remove 1 )) 

( N )  ̂ time ( t ) ^seq ( sn ) data (substr 

Attributes Aentity , N-Zpoint, and U-Zpoint represent the 
identifiers of the local communication entity, the network 
interaction point and the user interaction point, respec- 
tively. Element timeout representing the abstract primi- 
tive of the time-out event is inserted by the system process 
that administers the timer for message transmission. Ele- 
ment Inform records variables: attribute Tseq records the 
current send sequence number and attribute Time indi- 
cates the time-out period. Another attribute Rseq (which 
indicates the currently expected receive sequence num- 
ber) in element Inform is not expressed explicitly, be- 
cause attribute Rseq is not referenced in this production 
rule. Element Tdata is the send buffer that stores the cur- 
rently transmitted data block to be acknowledged. Element 
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commrule records the state transition rule for the time-out 
event. Element DataRequest represents the abstract net- 
work data request service primitive, where function 
(substr ( buf ) data inf) extracts values from attribute data 
to the end field (denoted as inf) of element Tdata (desig- 
nated by " ( buf ) ") , This rule is applied when local en- 
tity ( A  ) is in state ( sl  ) and receives a time-out event. 
In the RHS, the production rule calls external procedure 
trandata which, in turn, invokes the corresponding system 
process to re-issue the time-out transmission message and 
to initiate a timer to monitor this retransmission event. 

In a communication protocol, predicates are used as the 
preconditions to trigger a transition and variables are used 
to record some local or global status. By using OPS5, vari- 
ables can be expressed by attributes in some elements, or 
by one specific element to record all of the variables. For 
predicates, they can be modeled by the pattern expres- 
sions in elements. The satisfaction of a predicate is 
embedded in the existence of the corresponding ele- 
ment(s) in the WM and/or in the matching with some lo- 
cal or global status recorded in other elements. OPS5 also 
supports the functionality of processing the message text 
and numerical computations for variables, such as substr 
and compute (see the following paragraphs). For exam- 
ple, to specify the reception of an abstract network data 
indication service primitive in the Transport Alternating 
Bit Protocol (ABP) [30], one can use the following pro- 
duction rule: 

( p  Receive-Data 
{ ( DataInditation *N-Zpoint ( N ) *seq ( sn ) *type 

(Inform AAentity ( A ) "Rseq ( sn ) ) 
(cstate ^Aentity ( A  ) ^N-Zpoint ( N )  *U-Zpoint ( U )  

(commrute -1point server ^mess R-D *cstate ( SI ) 

trandata data ( m ) ) ( buf ) }  

*state ( S I  ) )  

*nstate ( s2 ) ) 
-- > 
(call tranack DataRFquest *Aentity ( A ) "N-Zpoint 

inf )) 
(modify 3 ^state ( s2 ) ) 
(modify 2 *seq (compute 1 - ( sn ) ) ) 
(remove 1) ) 

( N )  "seq ( s n  ) data (substr (buf ) data inf)) 

Element DataIndication representing the abstract network 
data indication service primitive is inserted by the system 
process that administers the receptions from the network 
layer. Element DataIndication records the network inter- 
action point, the sequence number of the message, the 
message type in this primitive, and the data block. To 
express the predicate that the receive sequence number is 
equal to the currently expected one, the same identifier is 
used in attribute seq of element DataIndication and in at- 
tribute Rseq of element Inform. 

This rule is applied when local entity ( A  ) is in state 
( s l  ) and receives a data block with the expected se- 
quence number from network interaction point ( N ).  In 
the RHS, the production rule calls external procedure 

- ~- ~ - ___- 

tranack which, in turn, invokes the corresponding system 
process to transmit an acknowledgement to the peer entity 
and the corresponding system process that administers the 
receive data blocks to indicate the readiness for upper 
users' reception. Then, the next expected receive se- 
quence number in attribute seq of element Inform is cal- 
culated by using function compute. Five arithmetic op- 
erators (addition, subtraction, multiplication, division, 
and modulus) used in communication protocols are all 
supported. 

B. Discussion 

One of the major advantages of the OPS5 rule-based 
specification is its simple and flexible structure. It uses 
production rules for functional specifications and uses ele- 
ments to store different types and levels of information. 
The pattern match computation allows each attribute to 
act as a data template for generic data types and allows 
both high-level and low-level specifications. Therefore, a 
protocol designer can specify a communication protocol 
very primitively or in detail. If the protocol designer wants 
to specify a protocol primitively or to specify a protocol 
for more generic realization without dealing with the de- 
tails of Protocol Data Unit (PDU), then PDU can be 
shrunk into a single attribute. That is, for those fields in 
PDU which are not related to the predicates of state tran- 
sitions, they can be represented by a single symbolic name 
(one attribute). On the other hand, if the protocol designer 
wants to specify a protocol in more detail, then PDU can 
be expanded to a number of attributes. That is, each field 
of PDU is represented by one attribute. For the abstract 
specification of interlayer interactions, the abstract prim- 
itives are represented by elements or external procedure 
calls with the corresponding elements. 

The flexibility of OPS5 also allows the incorporation of 
new features. Since the semantics of each element or each 
attribute is decided by protocol designers, they can incor- 
porate new features into the system easily without chang- 
ing the underlined software. For example, the priority de- 
scription in a communication protocol can be specified as 
an additional attribute in the corresponding element, i.e., 
the protocol designer can add attribute priority to element 
rule described in Section 111-A. Furthermore, if the pro- 
tocol designer wants to specify the control arbitration of 
the priority-based events, the following three production 
rules can be added to describe the control arbitration: 

1 .  ( p  Send-vs-Rec$ve-Competition 
( currentpriority priority ( p ) type ( t ) ) 
(cstatc *entity ( e >, *state ,< cs ) 
(rule entity ( e ) type s priority ( P I )  Lcstate 

( DataIndication *entity ( e,) *message ( m ) ) 
(rule *entity^ ( e ) type r* priority { ( p 2  ) 

( ( p l  ) )  cstate (cs )  message (m)) 
-- > 
(modify 1 *priority ( p l  ) *type s ) )  

( c s ) )  
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2. ( p  Receive-vs-Receive-Competition 
(currenLpriority ^priority ( p ) type ( t ) ) 
(cstate entity ( 4 )  state ( c s ) )  
(Data!ndication e$ty ( e,) message ( ml ) ) 
(rule entity ( e ) type r priority (pl  ) ^estate 

(Data!ndication e_ntity ( e,) message ( m2 ) ) 
(rule entiiy ( e ) type priority { ( p 2  ) ) 

( cs ) ^message ( ml ) 

( p l  ) } cstate ( cs ) message ( m2 ) ) 
-- > 
(modify 1 "priority ( p 2  ) ^type r ) )  

3 .  ( p  Multiple-TransitionSend-Win 
(currenyriority *priority ( p ) type s 
(cstate entity_( e ) state <, cs ) ) ~ 

(rule "id ( i ) entity ( e ) type s priority ( p ) 

-- > 
(call transmit DataRequest ^entity ( e ) ^message 

(modify 2 state ( n s ) )  
(modify 1 ^priority 0 ) ) .  

^estate ( cs ) ̂ message ( m ) nstate ( ns ) ) 

( m ) )  * 

Note that the production rule of Multiple- 
Transition-Receive-Win can be added in the same way as 
the third*production_ rule, and the action (make current- 
priority priority 0 type nil) is added to the end of the 
RHS of each production rule used for describing the mod- 
eling of send and receive transitions. According to the 
recency conflict resolution strategy, production rules 
X-Competition, where X is either Send-vs-Receive or 
Receive-vs-Receive, will be executed after the execution 
of an event in order to find the highest priority event 
among the applicable ones in the WM; then the winning 
event is executed by production rule Multiple- 

Transition-Y-Win, where Y is either send or receive. If 
there is only one event is in the WM, production rule 
X-Competition is not triggered and one of the original 
production rules for the modeling of send and receive 
transitions is executed. 

IV. VALIDATION PHASE 

In communication protocols, there are four types of 
logical errors, which are unspecified reception, deadlock, 
channel overflow, and nonexecutable interaction, and two 
types of logical properties, which are quiescent state and 
ambiguous state [8]. Since global state reachability anal- 
ysis is more straightforward and widely used to validate 
logical correctness of a communication protocol, we de- 
scribe in this section how global states, global state tran- 
sitions, logical errors, and logical properties can be for- 
mally modeled using the OPS5 production system. 

A .  Modeling of Global States 

A globalstate element is used to describe a global state. 
For example, the initial global state of the example in Fig. 
1 can be described as follows: 

(globalstate "entity DTE ^id 1 *size 0 "state ready 

(g!obalstate entity DCE *id 1 *size 0 ^state ready 

Since the size of a queue is variable and since only one 
vector value (an attribute value with variable size) is al- 
lowed in OPS5, two elements are used to describe a global 
state and are connected together by the same ID. Note that 
the queue in the two connected elements represents a 
channel from the peer entity to the local entity. 

B. Modeling of Global State Transitions 
Production rules can be used to describe the transition 

between reachable global states. The following two pro- 
duction rules can describe all possible transitions from a 
global state: 

queue nil] 

queue nil ) . 

1. ( p  e l-send-message-to-e2 

state ( x  ) ) ( hl ) } 
{ (?globalstate entity ( e l  ) Aid ( i )  *size ( s l  ) 

{ (globalstate ^entity { ( e2 ) ( ) ( e l  ) } ^id ( i ) 

(@e ^id ( r )  ̂ entity ( e l  ) ^type s lcstate ( x )  
message ( m ) nstate ( n ) )  

-- > 
(bind ( j ) (genatom) ) 
(bind ( s3 ) (compute ( s2 ) + 11) 
(make globalstate ^entity ( el ) id ( j  ) size 

(make globalstate *?ntity ( e2 ) id ( j  ) ^size 

*size ( s2 ) *state ( y ) ) ( h2 ) } 

( s l  ) "state ( n  ) "queue (sub%tr ( h l  ) 6 inf ) )  

( s3 ) ^state ( y ) queue (substr ( h2 ) 6 inf ) 
( m ) )  

(make rule-state ^ruleid ( r )  ̂ stateid ( j  ) ) )  

{ (globalstate entity ( e l  ) id ( i )  size ( s l  ) 
state ( x )  :queue { ( m )  ( )  nil}) ( h l ) }  

{ (Flobalstate ^entity { ( e2 ) ( ) ( e l  ) } *id ( i ) 
size ( s2 ) state ( y ) ) ( h2 ) } 

(rule ^id ( r )  ̂ entity ( e l  ) ^type r "cstate ( x )  

-- > 
(bind ( j ) (genatom) ) 
(bind ( s3 ) (compte  ( sl ) - 1)) 
(make gLobalstate e?tity ( e l  ) id ( j  ) size 

(make globalstate *:ntity ( e2 ) ^id ( j  ) ^size 

(make rule-state ruleid ( r ) *stateid ( j ) )  

2. ( p  el-receive7message-fro~-e2 

*message ( m ) ^nstate ( n ) )  

(s3) state ( n )  queue(subs t r (h1)  7 i n f ) )  

( s2 ) *state ( y,) queue (substr ( h2 ) 6 inf ) )  

where bind is an operation to assign the value of the sec- 
ond parameter to the first parameter and genatom is a 
function to create an unique number. 

The first production rule describes a send transition of 
entity ( e l  ). This rule can be applied when entity ( e l  ) 
is in state ( x  ) and there is a send rule in which entity 
( e l  ) sends a message ( m ) to entity ( e2 ) from current 
state ( x )  to next state ( n ) .  Then, a new global state is 
generated and inserted into the WM and a mark is set to 
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record that this rule has been used. Actions 3 and 4 copy 
the original contents of the queue to the new global state 
and append the message to the corresponding queue, re- 
spectively. 

The second production rule describes a receive transi- 
tion of entity ( e l  ) . This rule can be applied when entity 
( e l  ) is in state ( x  ), a message ( m ) is in the head of 
the queue from entity ( e2 ) to entity ( e l  ) and there is a 
receive rule in which entity ( e l  ) receives a message ( m ) 
from state ( x ) to state ( n ) . The remaining parts are sim- 
ilar to those of the send transition. 

C. Modeling of Logical Errors and Logical Properties 
In the same way, all logical errors and logical proper- 

ties are defined in the form of production rules. 
1 .) Unspecified Reception: An unspecified reception 

error occurs when an entity is in a state such that there is 
no specified receive transition corresponding to the recep- 
tion of a message which is in the head of the receive chan- 
nel [SI, [9]. The formal definition in a production rule can 
be described as follows: 

( p  receptionxerror 
(globalstate entity ( e l  ) “id ( i ) *size { ( sl ) > 

- (rule *^entity ( e l  ) type r cstate ( x  ) message 
o } *state ( x )  ̂ queue { (?  ) ( ) nil) 

( m ) nstate ( n ) ) 
-- > 
(make reception-error “id ( i ) ) 
(write RECEPTION ERROR IN ENTITY ( e l  ) ! 

STATE ID = ( i ) ) )  

where the symbol “-” before the second condition ele- 
ment represents “not exist.” The other more restricted 
definition of the unspecified reception error is limited to 
a receive state only (in which there is no send transition) 
[3 11. In this case, one more condition element should be 
addet to the precondition part: - (rule ,entity ( e l  ) *type 
( s ) cstate ( x  ) ). 

2.) Deadlock: A deadlock error occurs when all 
channels are empty and all entities are in the states in 
which no send transition exists [SI, [9]. If the protocol is 
acyclic, these states should not be final states. In other 
words, if one of the entities is not in the final state, this 
global state is in a deadlock state. The formal definition 
in the form of a production rule is described as follows: 

(a) ( p  deadlock1 
(globalstate ^entity 1 *id ( i ) :size 0 :state ( x  ) ) 
(globalstate *entity 2 ,id, ( i ) size 0 state ( y ) ) 
- (rule *e?tity 1 *type s cstate ( x  ) *message 

- (rule ^e;ntity 2 type s cstate ( y ) ,message 

- (globalstate entity final-state1 *state ( x ) ) 
-- > 
(make deadlock-error “id ( i ) ) 
(write DEADLOCK ERROR! state ID = ( i ) )) 

( m l  ) nstate ,< n l  ) )  , 

( m2 ) nsta!e ( n2 ) ) 

(b) ( p  deadlock2 
(globalstate *entity 1 lid ( i ) :size 0 :state ( x  ) ) 
(globalstate *entity 2 id, ( i ) size 0, state ( y ) ) 
- (rule *e?tity 1 “type s cstate ( x  ) message 

- (rule *e?tity 2 type s cstate ( y ) ^message 

- (globalstate *entity final-state2 *state ( y ) ) 
-- > 
(make deadlock-error *id ( i ) ) 
(write DEADLOCK ERROR ! state ID = ( i ) ) ) .  

( m l  ) nstate ( n l  ) 

( m2 ) nstate ( n2 ) ) 

3.) Channel Overjlow: For protocols whose com- 
munication channels are finite, a channel overflow error 
occurs when an entity attempts to send a message into a 
channel which has already reached its maxiumum capac- 
ity [SI, [9]. The formal definition in the form of a pro- 
duction rule is described as follows: 

( p  channeloverflow 
(channelbou?d *number ( p ) ) 
(gldbalstate entity ( e l  ) id ( i )  size { ( s l  ) > 

-- > 
( make channel-overflow *id ( i ) ) 
(write CHANNEL OVERFLOW IN QUEUE TO 

( n ) ) )  

ENTITY ( e l  ) STATE ID = ( i ) ) ) .  

4.) Nonexecutable Interaction: A nonexecutable in- 
teraction is a communication rule which has been speci- 
fied but has never been executed [8], [9]. It can be found 
by the following production rule after all global states are 
generated: 

(p red_undant-rule 
(rule id (i),) 
- (rule-state ruleid ( i ) *stateid ( s ) ) 
-- > 
(make redundant-rule *id ( i ) ) 
(write REDUNDANT RULE ID = ( i ) ) 

5.) Quiescent State: A quiescent state is a state in 
which both communication channels are empty [8]. The 
formal definition in the form of a production rule is de- 
scribed as follows: 

( p  quiescent;state 
(globalstate entity 1 Aid ( i )  :size 0)  
(globalstate “entity 2 *id ( i )  size 0)  
-- > 
(make quiescent-state “id ( i ) ) 
(write IT IS A QUIESCENT STATE ID = ( i ) ) ). 

6.) Ambiguous State: An ambiguous state is a state 
in which an entity’s state can coexist in more than one 
different quiescent state [8]. The formal definition in the 
form of a production rule is described as follows: 

(p ambiguou_s-state 
(globalstate entity ( e l  ) ,id ( i ) &size 0 “state 

( x ) )  
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(globalstate "entity { ( e2 ) ( ) ( e l  ) } "id ( i ) ^size 

(giobalstate entity ( e l  ) -id { ( j )  ( ) ( i ) ] ^size 0 

(globalstate ^entity ( e 2 )  id ( j )  "size 0 "state 

-- > 
(make ambiguous-state "entity ( e l  ) ^id1 ( i )  ^id2 

(write IT IS AN AMBIGUOUS STATE ID = ( i )  
IN ENTITY ( el ) WITH STATE ID = ( j  ) )). 

0 state 

state { ( z )  0 W } ) "  

( Y ) )  

( j ) )  

D. Incremental Validation 

In order to design a correct communication protocol, a 
complex and repeated cycle consisting of respecification 
and revalidation is executed. In the nonincremental vali- 
dation case, any modification of communication protocols 
will invoke a revalidation process from the beginning. 
When there are a lot of modifications, including adding 
or deleting too many rules or modifying the data struc- 
tures that result in many modifications in rules, this non- 
incremental approach is preferable. However, when only 
a few rules are modified, the nonincremental approach 
makes protocol design very time-consuming. The reason 
is that those global states that are error-free and are un- 
related to the modification still have to be reexplored in 
the nonincremental validation approach. The incremental 
validation process shows its effectiveness and usefulness 
when modification is small. Therefore, an incremental 
validation process is developed for use in PDPS. In this 
subsection, an incremental validation algorithm and its 
formal representation in production rules are briefly de- 
scribed. 

There are two parts in the incremental validation pro- 
cess: adding or deleting rules. In both cases, the system 
will first check whether this rule has already existed or 
not. In the case of adding a rule, if this rule does exist, 
then it is a duplicated rule. In the case of deleting a rule, 
if this rule does not exist, then it is meaningless to delete 
a non-existing rule. The following two production rules 
are used to check these two cases: 

1. ( p  check-add 
( n e w _ ( i > )  I 

(+e id ( i )  entity ( e )  "type ( I )  "estate ( e )  
message ( m ) nstate ,< n ) ) 

(rule "id { ( j )  ( )  ( i ) }  entity ( e )  "type ( t )  

-- > 
(write THIS RULE EXISTS) 
(remove 1 2)) 

2. ( p  check-delete 
(old ( A i ) )  
(rule id ( i ) entity ( e ) "type ( t ) ^cstate ( e ) 

- (pule id { ( j )  ( ) ( i ) } en$ty ( e ) "type ( 1) 

"estate ( c ) ^message ( rn ) nstate ( n ) ) 

"message ( m ) "nstate (: ) ) 

cstate ( c ) message ( rn ) nstate ( n ) ) 

lfarmly, ramerlate) 

delek thc $law a 
a-raw C r m R  

(b) 
Fig. 2. Execution steps in the incremental analysis. a) Adding a rule; b) 

Deleting a rule. 

-- > 
(write THIS RULE DOESNOT EXIST) 
(remove 1 2)) 

where element new (old) is a flag to denote the rule that 
is to be added (deleted). 

Fig. 2(a) shows the following execution steps in add- 
ing a rule. After the new rule is stored in the WM, the 
system deletes those associated errors that should disap- 
pear after adding this rule. For example, an unspecified 
reception in a communication entity should be deleted if 
the new rule is the missing receive transition; a deadlock 
should be deleted if the new rule is a send transition that 
can be executed in the deadlock state. The following pro- 
duction rule describes the deletion of a reception error. 

( p  Add-delete-reception-error 
(reception-error id ( s ) ) 

(rule id ( i )  entity ( e )  "type r "estate ( c )  "mes- 

(globalstate entity ( e ) id ( s ) "size { ( z ) > 0 } 

( n e w { i ) )  " 

sage ( m ) _nstate ( n ),> 

Astate ( e )  "queue ( rn ) )  
-- > 
(remove 1)). 

The deletion of deadlock errors can be described in a 
similar way. After these steps, by the data-driven prop- 
erty of the OPS5 production system, the new rule will be 
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automatically applied to the suitable global states by trig- 
gering the send and receive production rules (described in 
Section IV-B). Those production rules for checking logi- 
cal errors and logical properties will also be triggered if 
this added rule would introduce new logical errors and 
logical properties. 

Fig. 2(b) shows the following execution steps in de- 
leting a rule. If this rule does exist, it can further divide 
into two conditions: 1) this rule has not generated any 
global state yet, i.e., protocol designers find it is useless 
by their insight before it has ever been applied; 2) this 
rule has been applied and has generated some global 
states. The following two production rules are used to dis- 
tinguish these two conditions. 

1. ( p  delete-rule-1 
(old 0)) 
(rule id ( i ) entity ( e ) *type ( t ) *cstate ( c )  

(?le id { < j  )A( ) ( i )  } entity ( e )  *type ( t )  

- (rule-state ruleid ( j ) )  
-- > 
(remove 1 2 3)) 

2. (p  delete-rule-2 
(old 
(?le id ( i )  entity ( e )  *type ( t )  *cstate ( c )  

(?le id { < j > * (  >. ( i ) }  entity ( e )  *type ( t )  

(rule-state ruleid ( j  ) ) 
-- > 
(make oldrule ( j  ) ) 
(make task delete-state) 
(remove 1 2 3)). 

*message ( m ) *nstate ,< n ) ) 

cstate ( c)  message ( m  ) *nstate ( n ) )  

m%ssage ( m ) * m a t e  5 n ) 

cstate (,c ) message ( m ) nstate ( n ) ) 

In the first condition, there is no side effect after delet- 
ing this rule. In the second condition, after deleting this 
rule, all of the global states generated by this rule, all 
descendants of these global states and the associated in- 
formation should be deleted. To support these actions, the 
following information is recorded in the WM: 

1.) Those states generated by applying a speciJic 
rule: This jnformation is  stored in element rule-state: 
(rule-state ruleid ( i ) stateid ( s ) ). This element de- 
notes that state ( s  ) is produced after rule ( i ) is trig- 
gered. 

2.) The hierarchy among states; This information is 
stored in element family: (family mother ( m )  *child 
( c ) ). This element denotes that state ( m ) is the mother 
of state ( c )  in the reachable global state graph. That is, 
state ( c ) is produced from state ( rn ) by triggering a 
transition. 

3.) The duplicated states: This information is stored 
in element samestate: (samestate *first (f) *second 
( s )). This element denotes that (f) is the first occur- 
rence of this state and ( s ) is the duplicated one. 

There are three cases in deleting the associated states: 

1 .) The corresponding generated state' is a unique 
state in the reachable global state graph: In this case, the 
system deletes this state and its descendants by referring 
to element family iteratively. The following production 
rule is used for this case: 

( p  delete-state-unique 
(task delete-state) 
(oldrule ( i?) 
(rule-state ruleid ( i )* * stateid ( s ) ) 
(globalstate "entity 1 id ( s ) ) 
(globalstate *:ntity 2 id ( s ) )  
- (samestate *first ( s ) ) 
- (samestate second ( s ) ) 
-- > 
(make *oldstate ( s ) ) 
(make task delete-more) 
(remove 3 4 5)). 
2.) The corresponding generated state is a duplicated 

state: In this case, it means that this state is a second 
occurrence of an existing state. Since this state will not 
have any descendant in the reachable global state graph, 
the system deletes this duplicated state only. The follow- 
ing production rule is used for this case: 

( p  delete-state-not-first 
(task delete-state) 
( oldrule ( i )) 
(globalstate entity 1 *id ( s ) )  
(globalstat: *entity 2 *i$ ( s ) ) 
(rule-state ruleid ( i ) stateid ( s ) ) 
(samestate *first ( f ) *second ( s ) ) 
-- > 
(make *oldstate ( s ) ) 
(make task delete-more) 
(remove 3 4 5 6)). 
3.) The corresponding generated state is theJirst oc- 

currence and there are duplicated states in the reachable 
global state graph: In this case, the system deletes this 
state and continues to delete its descendants if they exist. 
The following production rule is used for deleting the first 
state and making elements for the following tasks: 

(p  delete-state-first 
(task delete-state) 
( oldrule ( i? ) 
(rule-state ruleid ( i ) stateid ( s ) ) 
(globalstate *entity 1 :id ( s ) ) 
( globalstate- *entity 2 *id ( s ) ) 
(samestate first ( s ) second ( n ) ) 
-- > 
(make *oldstate ( s ) ) 
(modify 4 *id ( n ) )  
(modify 5 id ( n ) ) 
(make changesamestate *first ( s ) *second ( n ) ) 
(make task change-same-state) 
(make task delete-more) 
(remove 3 6)) 
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Since this state can also be produced by triggering other 
rules, the system promotes one of the duplicated states 
from element samestate to be the first occurrence and up- 
dates the related information: replacing the value of at- 
tribute first in the elements of samestate with the ID of 
the promoted one. By using elements family and same- 
state to describe the relationship of global states, the pro- 
motion process can be described in the similar way as the 
above production rules. 

When the system deletes a state, all of the associated 
errors and information should also be deleted. For sim- 
plicity, we use the production rule that deletes deadlock 
errors as illustration. 

( p  Del-delete-deadlock 
(task delete-more) 
(oldstate ( i ) ) 
(deadlock-error ^id ( i ) ) 
-- > 
(remove 3)). 

After deleting the first state, the system continues to 
delete the descendant states [path B in Fig. 2-(b)]. After 
deleting one path traced from a state generated by apply- 
ing this rule, the system will continue to delete the other 
paths traced from those states that were also generated by 
applying this rule [path A in Fig. 2-(b)]. Finally, by trig- 
gering those production rules that describe logical errors 
and logical properties, the system will check whether the 
absence of this rule would lead to any new logical error 
or logical property. 

E. Discussion 
Our PDPS is currently developed in the Encore Multi- 

max with 12 processors by using the C-based OPS5 pro- 
duction system [27]. In PDPS, a user-friendly interactive 
design environment is supported and a knowledge base is 
provided to answer all possible questions. Many options 
are available to protocol designers in the beginning. These 
options includes: 1) specifications of the channel bound, 
initial states and final states for communication entities; 
2) input from either an external file or the designer’s ter- 
mimal; 3) print all error messages immediately? 4) print 
global states step by step? 5) stop when an error is found 
or after all errors are found? 6) print the error path (from 
the initial state to the error state) immediately after an 
error is found? 7) which definition of the reception error 
(mentioned in Section IV, C.) is used? 

PDPS works as follows. After the input and the design- 
er’s choices are made, PDPS will start to find all possible 
legal transitions and print out information. A duplicated 
state is allowed to be generated, but it will be detected 
and deleted later. When some logical errors or logical 
properties in a certain state are detected, the system can 
identify these errors or properties and then print out the 
related messages to the designer. Furthermore, during the 
intermediate stage of validation, many options are pro- 
vided, including listing communication rules, currently 
generated states, and adding/deleting rules dynamically. 

TABLE I 
THE TIME-PROCESS T A B L E  OF V A L I D A T I N G  X.25 PROTOCOL I N  PDPS 

Since incremental validation is supported in PDPS, only 
the associated states will be generated or deleted instead 
of regenerating all states from the beginning. Finally, after 
generating all possible states either from the beginning or 
from the point of incremental validation, the system can 
answer questions, including listing states, communication 
rules, duplicates states, errors and properties, the states 
generated by a specified communication rule and the paths 
from the initial state to a specified state. Meanwhile, the 
designer can add/delete rules at this point, then the system 
will continue to do the incremental validation until the 
designer is satisfied. 

By using the C-based OPS5 executed in the Encore 
Multimax with 12 processors, we have observed that 
PDPS needs 106 seconds to validate the X.25 protocol 
depicted in Fig. 1 [7]. This time includes the system time 
and the user time. Table I shows the time-process rela- 
tionship for validating the X.25 protocol in PDPS. In ad- 
dition to specifying the number of processes, the protocol 
designer can also specify the number of task queues. A 
task queue holds a list of tasks that are waiting for pro- 
cessing. A task is an independently schedulable unit of 
pattern match work that can be executed in parallel with 
other tasks. In this way, each process searches for a task 
by scanning these task queues. When a small number of 
task queues are used, it will result in processes’ conten- 
tion for the task queues. On the other hand, when a large 
number of task queues are used, it will result in a situation 
that most of the task queues will be empty and processes 
will waste time scanning several empty task queues before 
finding one with a task. This table also lists the number 
of task queues for each number of processes that will pro- 
duce optimal performance. 

Since there are 12 processors and 1 processor is used 
for processes management, the speed-up reaches its peak 
when there are 11 processes. When the number of pro- 
cesses is more than 11 (12, 13, 14 ...) the performance 
becomes worse. The reason is that the overhead for pro- 
cess allocation overshadows the speed-up derived from 
multiple processes. A higher degree of parallelism can be 
explored, because the speed-up obtained from the parallel 
execution of production rules will multiply with the speed- 
up obtained from the parallel pattern matching [32]. A 
key issue to allow a high degree of parallel execution of 
production rules is that the action part of one production 
rule will not update the condition part of the other pro- 
duction rules. (Action MAKE makes nonexisting condi- 
tions false; actions MODIFY and REMOVE make exist- 
ing conditions false.) The mutual exclusion issue in 
parallel protocol validation is many-READ-one- WRITE: 
after a global state is produced, this state will be used for 
(sharable) READ only. Hence, the RHSs (action parts) of 
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production rules for logical errors and logical properties, 
and for the modeling of transitions are independent of one 
another’s LHS. Therefore, a much better performance can 
be achieved when the parallelism is extended to the par- 
allel execution of production rules. 

The main advantage of reachability analysis is that it is 
straightforward, well-suited for validating protocols in the 
state transition model and easy to automate [lo]. While 
reachability analysis has been used for validation of pro- 
tocols of low to middle complexity, the practical use of 
reachability analysis for more complex protocols has been 
hindered by the problem of state space explosion [33]. 
Therefore, even based on multiprocessor computing sys- 
tems, it is impractical to use the straightforward reacha- 
bility analysis to validate every kind of protocols. The 
reason is that a finite size of storage space and a finite 
number of processors cannot accommodate and handle an 
astronomical or infinite amount of information. However, 
by using multiprocessor computing systems (such as the 
Hypercube with 128 processors and 128*64 Mb memory 
space in [34] or the Encore Multimax with 12 processors 
and 64 Mb memory space in PDPS) that have more pow- 
erful computing capability and larger storage space, we 
may be able to use reachability analysis for validating 
more complex protocols. For very complex protocols with 
an astronomical or infinite amount of global states that are 
not suitable for reachability analysis, program proof tech- 
niques for rule-based languages can be used [35], [36]. 
However, program proof techniques are not so straight- 
forward to apply and not so easy to automate [37]. The 
difficulty is that the formulation of assertions and proofs 
often requires human beings’ insight [ 11, [ 101. 

V. IMPLEMENTATION PHASE 
An abstract specification of a communication protocol 

describes the interactions of communication entities and 
is machine-independent. However, the real implementa- 
tion of a communication protocol includes the interactions 
with the execution environment and is machine-depen- 
dent. Most often, a generic description of the communi- 
cation protocol is specified in the specification phase by 
the protocol designer. In this generic description, the ma- 
chine-dependent part is usually specified abstractly or left 
unspecified. The realization of machine-dependent part, 
pertaining to the details of the operational architecture and 
the host operating system, is deferred until the implemen- 
tation phase. During the implementation phase, the ma- 
chine-dependent part is coded by the protocol implemen- 
tor. 

In this section, we briefly describe the protocol imple- 
mentation using the OPS5 production system approach. 

A.  General Implementation Model in OPS5 
Fig. 3 shows the general implementation model for the 

OPS5 production system approach. Production rules for 
the modeling of transitions are stored in the production 
memory. Elements in the WM can be classified into three 
sets: 1) the specification of communication rules, 2) the 

9 
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Fig. 3. Implementation model. 

representation of abstract primitives, and 3) other ele- 
ments, such as the elements used for states, variables and 
predicates. These productions and elements are specified 
by the protocol designer. 

The inference engine (IE) acts as the dispatcher to se- 
lect one of the applicable transitions for execution. The 
Interface Data Structures (IDS) store the real data formats 
that are used in communication with other layers. The ex- 
ternal procedures (and functions) can be classified into the 
following three groups: 

I .) Input Interface Procedures (UP) : IIP includes 
the upper-layer input interface procedures and the lower- 
layer input interface procedures. In the first step, IIP de- 
codes the input events received by the incoming event 
process according to IDS. Then, IIP encodes the incom- 
ing events in the elements that represent the correspond- 
ing abstract primitives. By using the commands provided 
in OPS5, these interface elements can be inserted into the 
WM. For example, the following commands inserts ele- 
ment DataIndication used for data indication in X.25 into 
the WM: 

dollar-value( dollar-intern( ‘ ‘ DataIndication ’ ’ )) ; 
dollar-tab(do1lar-intern( ‘ ‘entity”)); 
dollar-value(dol1ar-cvna(E1D)) ; 
dollar-tab(do1lar-intern (‘ ‘message’ ’)) ; 
dollar-value(dol1ar-intern(userbuffer[EID])) ; 
dollar-assert() ; 

where variables EID and userbuffer[EID] represent the 
identifiers of the receive entity and the pointer pointing to 
the storage of the receive data block, respectively. Since 
every data item in OPS5 is regarded as an atom, function 
dollar-intern is used to translate a string into a string atom 
and function dollar-cvna is used to translate a number into 
a number atom. After the translation, function dollar- 
- value puts the assigned value into the current field indi- 
cated by a pointer implicitly. In order to refer to a specific 
attribute, function dollar-tab is provided to move the 
pointer to the attribute expressed in the argument. Fi- 
nally, when all values are assigned, function dollar-assert 
inserts element DataIndication into the WM. 

2.) Output Interface Procedures (OIP): OIP in- 
cludes the upper-layer output interface procedures and the 
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lower-layer output interface procedures. In the first step, 
OIP decodes the abstract primitives that are represented 
in some interface elements. Then, OIP encodes the cor- 
responding outgoing events according to IDS. By using 
the commands provided in OPS5, OIP decodes the ab- 
stract primitives by extracting the values from the inter- 
face elements. For example, the following commands ex- 
tracts the values of attributes from element DataRequest 
used for data transmission in X.25: 

EID = dollar-cvan(dol1ar-parameter(do1lar-litbind- 

buffer[EID] = dollar-cvas(dol1ar-parameter- 
(dollarpintern( ‘‘entity”)))); 

(dollar-litbind(do1lar-intern( ‘‘message”)))); 

where variable buffer[EID] records the pointer pointing to 
the storage of the messages to be transmitted. In order to 
obtain the value of a specific attribute, the index of the 
attribute should be known first. Function dollar-litbind is 
provided to return the index of the field of the attribute 
indicated by the argument. Then, function dollar-param- 
eter returns the atom of the field indicated by the argu- 
ment. Thereafter, to obtain the value of the atom with the 
right data type, function dollar-cvan is used to translate a 
number atom into a number; function dollar-cvas is used 
to translate a string atom into a string. 

3.) Local Event Procedures (LEP): LEP includes 
procedures and functions that deal with the local system 
events, such as the memory management and the time-out 
monitor. 

The control flow in this model (Fig. 3) is described as 
follows: When an input event arrives from the other lay- 
ers, the corresponding incoming event process is awak- 
ened and the corresponding input interface procedure is 
called. Next, this input interface procedure interprets the 
input event according to the interface data structures and 
generates the corresponding elements. Then, the gener- 
ated elements are inserted into the WM. These elements, 
in turn, trigger the corresponding production rules by the 
IE and invoke the related actions: changing a local enti- 
ty’s state, modifying the configuration of the WM and/or 
calling external procedures. After that, these called ex- 
ternal procedures may invoke some outgoing events by 
extracting the values from the interface elements. Ac- 
cording to these extracted values and the interface data 
structures, the output interface procedure generates the 
outgoing message and/or some local environment events. 
For example, a timer is set up to monitor a transmission 
event. Finally, the outgoing event process sends the out- 
going message to the other layers. For local event pro- 
cessing, such as the initiation and the expiration of a timer, 
the corresponding execution is similar to that for an out- 
going event process and for an incoming event process, 
respectively. 

B. Discussion 
In the OPS5 production system approach, the machine- 

independent part is specified in rule-based computations 
and the machine-dependent part is abstractly specified 

through external procedure calls by the protocol designer 
in the specification phase. In the implementation phase, 
the machine-dependent part is coded according to the op- 
erational architecture and the host operating system by the 
protocol implementor. The flexibility of OPS5 also allows 
the implementor to code the machine-dependent part using 
production rules, depending on whether the computation 
is more production-oriented or procedure-oriented. For 
example, the control arbitration for priority-based events 
can be expressed in production rules (discussed in Section 
111. B . )  

For the code process paradigm, the formal specification 
in OPS5 production rule-based code is translated into as- 
sembly code by the ParaOPS5 compiler, then the assem- 
bler translates assembly code into object code (this object 
code can be executed in Encore or VAX); for the external 
procedures or functions that are written in a procedure 
language, such as C or PASCAL, the corresponding com- 
piler compiles them into object code. Next, by using the 
linker and the loader, the complete object code for the 
communication protocol is produced. In order to allow the 
OPS5 code to be directly executed on a general UNIX 
system, instead of translating to assembly code and then 
object code, a CParaOPS5 compiler can translate the 
OPS5 production rule-based code into C code (which can 
be executed in either uniprocessor systems or multipro- 
cessor systems). In this way, the OPS5 specification is 
allowed for direct execution on a general UNIX system. 

VI. SUMMARY AND CONCLUSION 
Fig. 4 shows an overview of the protocol design pro- 

cess in PDPS. Elements for representing communication 
rules, abstract primitives and others, such as states, pred- 
icates and variables, and production rules for the state 
transitions are formally specified in the specification 
phase. The machine-dependent part, such as inputloutput 
interface procedures, local events procedures, and inter- 
face data structures, are supplemented in the implemen- 
tation phase. In the validation phase, some of the produc- 
tion rules generate all of the possible global states in a 
communication protocol, and others formally describe 
logical errors and logical properties in the communication 
protocol; some additional elements are used to describe 
the global states, logical errors and logical properties, and 
other frequently changed information. 

For both simulation and implementation, there is a 
trade-off between the abstract specification level and the 
complexity in deriving the machine executable code. As 
has been pointed out in [ 161, [ 171, LOTOS specifications 
are too abstract so that they cannot be directly translated 
into the machine executable code; therefore, they need a 
series of translation steps, such as LOTOS specifications 
- > CCS specifications - > PROLOG specifications [ 1 13. 
On the other hand, if a formal description technique be- 
comes an overspecification in order to be directly machine 
executable, it is no longer qualified as an abstraction. As 
has been pointed out in [18]-[20], ESTELLE specifica- 
tions suffer from this kind of drawback, since they include 
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Fig. 4. Overview of the protocol design process in PDPS. 

too many implementation-oriented details. Therefore, one 
of our motivations in using the OPS5 production system 
approach is trying to compromise these two endpoints: 
OPS5 provides both rule-based and procedure-based com- 
putations to avoid overspecification, and OPS5 provides 
generic data templates by using pattern matching for ge- 
neric realizations. 

Formal protocol description techniques can be classi- 
fied into three categories [ 11: the state-transition model, 
the abstract language model [38], and the hybrid model 
[39], [40]. The state transition model is abstract and is 
very easy to automate; however, reachability analysis is 
hindered by the problem of state explosion. The abstract 
language model is good for theoretical proof of functional 
correctness; however, efforts to prove the correctness of 
a program far exceed those required for developing the 
program, and the correctness proof of a program usually 
depends heavily on human ingenuity and is hard to auto- 
mate. The hybrid model tries to combine the features of 
both the state-transition and the abstract language models; 
all of the standardized formal description techniques, such 
as ESTELLE [39] and LOTOS [40], belong to this model. 
In the hybrid model, the state-transition part of the model 
captures the control aspects of a protocol while variables 
and data are easily handled by the program part of the 
model. Depending on how high a level of abstraction is 
used, formal description techniques based on the hybrid 
model require different degrees of efforts in the machine 
executable phase, either for simulation or real implemen- 
tation. The OPS5 production system approach is also 
based on the hybrid model; OPS5 uses production rules 
to specify the state-transition part of a protocol and uses 
attributes in elements as generic data templates to specify 
variables and data of the protocol. Both reachability anal- 
ysis and rule-based program proof techniques [35], [36] 
for protocol validation are also applicable to the OPS5 
production system approach, depending on the complex- 
ity of the protocol and the execution environment. 

In the past, many people have tried to reduce the size 
of global-state space that must be explored [41], but few 
have tried to use parallel execution for reachability anal- 
ysis [34]. We believe that both the parallel execution and 
the global state reduction strategy should be applied to 
obtain the best performance. Moreover, it is not wise to 
apply one global state reduction strategy to the reachabil- 
ity analysis of all kinds of protocols, due to the fact that 
each kind of protocols has its own characteristics and each 
global state reduction strategy has its own applicable do- 
main of protocols. Nevertheless, when a combination of 
parallel execution and global state reduction strategy is 
used, the global state reduction strategy should keep the 
one- WRITE-many-READ characteristic in protocol vali- 
dation (discussed in Section IV. E.). If the additional in- 
formation used for the reduction strategy results in many- 
WRITE-many-READ, then the reduction strategy is not 
suitable for parallel execution. We are now studying the 
feasibility of using an intelligent interface to classify pro- 
tocols and to apply the suitable global state reduction 
strategy to each kind of protocols. In this way, through 
an intelligent protocol validation system that is executed 
in a multiprocessor environment, reachability analysis of 
more complicated protocols can be carried out. In addi- 
tion, communication protocol performance analysis [42] 
can be realized by adding probability and time constraints 
to each communication rule. 

From our experience in constructing a protocol design 
system based on the OPS5 production sytem, we have ob- 
served two disadvantages. First, although the combined 
use of the C-based implementation and an efficient pattern 
matching algorithm in OPS5 can resolve the pattern 
matching bottleneck of low to middle complex computa- 
tions [27], pattern matching is still the bottleneck for high 
complex computations in the OPS5 production system. 
Therefore, for those computations with high complexity, 
such as global state reachability analysis, special hard- 
ware (such as the Encore Multimax with 12 processors) 
is required. Second, OPS5 is a general-purpose specifi- 
cation language that is not designed for formal protocol spec- 
ification only. Therefore, some parts of the formal spec- 
ification cannot be described compactly. For example, n2 
- n elements are required to describe a global state in an 
n-entity protocol. 

Most of the existing approaches to protocol design are 
based on the translation of heterogeneous representations 
used in the specification, validation, implementation, and 
testing phases of a communication protocol. However, 
these approaches not only make the protocol design very 
time-consuming but also require a lot of work in devel- 
oping different kinds of software tools to handle these 
phases. Our OPS5 production system approach integrates 
both rule-based and procedure-based computations by 
using a global working memory in which different types 
and levels of information are all represented in a uniform 
structure. Therefore, to realize phase B from phase A 
(specification - > validation, specification - > implemen- 
tation, specification and implementation - > testing), we 
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can combine those related elements in phase A and some 
additional elements used in B to generate the correspond- 
ing computations, either rule-based or procedure-based. 
Currently, we are investigating the feasibility of applying 
the OPS5 production system approach to protocol testing. 
This extension, together with our current development, 
will result in a general-purpose computer-aided protocol 
design system. 
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